martes, 28 de junio de 2016

Trabajo, Energía y Potencia

TRABAJO-ENERGÍA-POTENCIA






















































































































































































































































































Rozamiento o Fricción

ROZAMIENTO O FRICCIÓN

Del latín frictio, el término fricción deriva de friccionar. Este verbo refiere a frotar, restregar o rozar algo. Se conoce como fuerza de fricción a la que realiza una oposición al desplazamiento de una superficie sobre otra, o a aquélla opuesta al comienzo de un movimiento.
La fricción, como fuerza, se origina por las imperfecciones entre los objetos que mantienen contacto, las cuales pueden ser minúsculas, y generan un ángulo de rozamiento.
Es posible distinguir entre la fricción estática, que es una resistencia que necesita ser trascendida para movilizar una cosa frente a otra con la que tiene contacto, y la fricción dinámica, que es la magnitud constante que genera oposición al desplazamiento cuando éste ya se inició. En pocas palabras, el primer tipo tiene lugar cuando los cuerpos se encuentran en reposo relativo, mientras que el segundo ocurre una vez que se encuentran en movimiento.


Un ejemplo de fricción estática ocurre cuando un motor se encuentra detenido durante un largo periodo. Por otra parte, la fricción dinámica puede verse a partir de la acción de las ruedas de un vehículo al momento de frenar.
Aunque no se conocen con exactitud todas las diferencias entre ambos tipos de rozamiento, la idea general es que el estático es ligeramente mayor que el dinámico; como las superficies en las que se dará la fricción se encuentran en reposo, es posible que se generen enlaces iónicos o microsoldaduras que los aferren entre sí, lo cual no tiene lugar una vez en movimiento.
El coeficiente de fricción, que a menudo se simboliza con la letra griega µ (pronunciada “mu”), es un valor escalar sin dimensión que describe la proporción de la fuerza de fricción entre dos cuerpos y de la que los junta. Éste puede estar apenas encima de cero o ser mayor a uno y depende de los materiales en cuestión; por ejemplo, el hielo sobre el acero tiene un coeficiente de fricción bajo, mientras que la goma sobre el pavimento, uno alto.
Este término fue presentado por el físico francés Arthur-Jules Morin en el siglo XIX. Cabe mencionar que el coeficiente de fricción es una medición empírica, lo cual indica que fue advertida a través de la experimentación y que no es posible calcularla. Retomando las diferencias entre tipos de superficies, dado un caso de rozamiento, es muy probable que el coeficiente resulte mayor en un caso estático que en uno dinámico. Una excepción es el de la dupla teflón sobre teflón, ya que el valor coincide para ambos tipos de contacto.

Aunque en general se dice que el coeficiente de fricción es una propiedad de los materiales, es más adecuado definirlo como una propiedad de los sistemas. La razón es que existen factores más allá de las características de cada superficie que afectan los resultados, tales como la temperatura, la velocidad y la atmósfera. Por ejemplo, un alfiler de cobre deslizándose por una gruesa lámina del mismo material puede tener un coeficiente que vaya de 0,6 a 0,2, de forma inversamente proporcional a la velocidad.

Segunda Condición de Equilibrio

SEGUNDA CONDICIÓN DE EQUILIBRIO

La suma algebraica de las torcas aplicadas a un cuerpo con respecto a un eje cualquiera perpendicular al plano que los contiene es igual a cero.
Momento de fuerza o torque:
El momento de una fuerza o torca produce una rotación de un cuerpo alrededor de un punto fijo físicamente llamado eje.
El momento de una fuerza con respécto a un punto cualquiera, (centro de momento o eje de rotación) es el producto de la fuerza por la distancia prependicular del centro de momento a la fuerza (brazo de momento)
Los signos de este pueden ser positivo cuando el movimiento es anti-horario con respecto a su eje, y negativos cuando es horario con respecto a su eje.

Torque de una Fuerza


Cuando se aplica una fuerza en algún punto de un cuerpo rígido, el cuerpo tiende a realizar un movimiento de rotación en torno a algún eje. La propiedad de la fuerza para hacer girar al cuerpo se mide con una magnitud física que llamamos torque o momento de la fuerza. Se prefiere usar la palabra torque y no momento, porque esta última se emplea para referirnos al momento lineal, momento angular o momento de inercia, que son todas magnitudes físicas diferentes para las cuales se usa una misma palabra.
Analizaremos cualitativamente el efecto de rotación que una fuerza puede producir sobre un cuerpo rígido. Consideremos como cuerpo rígido a una regla fija en un punto O ubicado en un extremo de la regla, sobre el cual pueda tener una rotación, y describamos el efecto que alguna fuerza de la misma magnitud actuando en distintos puntos, produce sobre la regla fija en O, como se muestra en la figura (a).Una fuerza F1 aplicada en el punto a produce una rotación en sentido antihorario, F2 en b produce una rotación horaria y con mayor rapidez de rotación que en a, F3 en b pero en dirección de la línea de acción que pasa por O no produce rotación, F4 inclinada en b produce rotación horaria con menor rapidez de rotación que F2; F5 y F6 aplicadas perpendicularmente a la regla no producen rotación. Por lo tanto existe una cantidad que produce la rotación del cuerpo rígido relacionada con la fuerza, que definimos como el torque de la fuerza.













Se define el torque T  de una fuerza F que actúa sobre algún punto del cuerpo rígido, en una posición r respecto de cualquier origen O, por el que puede pasar un eje sobre el cual se produce la rotación del cuerpo rígido, al producto vectorial entre la posición r y la fuerza aplicada F.








El torque es una magnitud vectorial, si q es el ángulo entre r y F, su valor numérico por definición del producto vectorial, es:






Su dirección es siempre perpendicular al plano de los vectores r y F, cuyo diagrama       vectorial se muestra en la figura que sigue; su sentido está dado por la regla del producto vectorial o la regla de la mano derecha. En la regla de la mano derecha los cuatro dedos de la mano derecha apuntan a lo largo de r y luego se giran hacia F a través del ángulo q, la dirección del pulgar derecho estirado es la dirección del torque y en general de cualquier producto vectorial.

















Por convención se considera el torque positivo o negativo si la rotación que produce la fuerza es en sentido antihorario u horario respectivamente.
El torque de una fuerza depende de la magnitud y dirección de F y de su punto de aplicación respecto de un origen O. Si la fuerza F pasa por O, r = 0 y el torque es cero. Si q = 0 o 180º, es decir, F está sobre la línea de acción de r, F senq = 0 y el torque es cero. F senq es la componente de F perpendicular a r, sólo esta componente realiza torque, y se le puede llamar F. En la siguiente figura se ve que r = r senq es la distancia perpendicular desde el eje de rotación a la línea de acción de la fuerza, a r se le llama brazo de palanca de F. Entonces, la magnitud del torque se puede escribir como:

T = r (F senq) = F (r senq) = rF = rF






Problemas aplicando la 1ra Condición de Equlibrio

PROBLEMAS APLICANDO LA PRIMERA CONDICIÓN DE EQUILIBRIO



PROBLEMA

El bloque mostrado tiene una masa m = 5 kg y se encuentra en equilibrio. Si el resorte (K = 20 N/cm) se encuentra estirado 4 cm, determinar la tensión de la cuerda vertical.



Como K = 20 N/cm, cuya interpretación es que por cada centímetro de deformación del resorte la fuerza elástica que se genera internamente es de 20 N, se deduce (ley de Hooke) que cuando la deformación sea de 4 cm la fuerza elástica en el resorte será de 80 N.
Hagamos DCL del bloque, teniendo presente que tanto el resorte como la cuerda vertical se encuentran "tensadas" y por tanto las fuerzas que actúan sobre el bloque debido a estos cuerpos se grafican "saliendo" del bloque, y apliquemos la 1ra condición de equilibrio.



PROBLEMA
Si el bloque mostrado en las figura pesa 120 N, determinar las tensiones de las cuerdas A y B.




Como sobre el bloque solo actúan dos fuerzas (la fuerza de la gravedad y la tensión de la cuerda vertical) y este se encuentra en equilibrio, la tensión de la cuerda será igual (en módulo) a la fuerza de la gravedad del bloque.
A continuación hagamos DCL del nudo en donde convergen las tres cuerdas, teniendo presente que las tensiones de las tres cuerdas "salen" del nudo, y a continuación construyamos el triángulo de fuerzas.




Lo que a continuación se tiene que hacer es resolver, el triángulo de fuerzas construido. En este caso, relacionando el triángulo de fuerzas con el triángulo notable de 37° y 53°, deducimos que (k = 30).



PROBLEMA
Si la esfera mostrada en la figura es de 20N, y el módulo de la fuerza F aplicada es de 80 N, determinar los módulos de las reacciones del apoyo en A y B.



Hagamos DCL de la esfera teniendo presente que las reacciones del apoyo en A y B son perpendiculares a las superficies en contacto y se grafican "entrando" al cuerpo que se analiza.



Teniendo presente que los ángulos de la dos perpendiculares son iguales, deducimos que la reacción del apoyo en A (RA) forma con la vertical un ángulo que es igual al ángulo diedro 2θ.
Por otro lado, tenido presente que los ángulos alternos internos entre rectas paralelas son iguales, deducimos que la fuerza F forma con la horizontal un ángulo θ.
A continuación construyamos el triángulo de fuerzas tenido presente que la resultante de la reacción del apoyo en B y el peso apunta hacia arriba.



Se comprueba que el triángulo de fuerzas es un triángulo equilátero y por tanto:





Primera Condición de Equilibrio (Traslacional)

LA PRIMERA CONDICIÓN DE EQUILIBRIO (TRASLACIONAL)

Las condiciones de equilibrio son las leyes que rigen la estática. La estática es la ciencia que estudia las fuerzas que se aplican a un cuerpo para describir un sistema en equilibrio. Diremos que un sistema está en equilibrio cuando los cuerpos que lo forman están en reposo, es decir, sin movimiento. Las fuerzas que se aplican sobre un cuerpo pueden ser de tres formas:


-Fuerzas angulares: Dos fuerzas se dice que son angulares, cuando actúan sobre un mismo punto formando un ángulo.




















-Fuerzas colineales: Dos fuerzas son colineales cuando la recta de acción es la misma, aunque las fuerzas pueden estar en la misma dirección o en direcciones opuestas.














-Fuerzas paralelas: Dos fuerzas son paralelas cuando sus direcciones son paralelas, es decir, las rectas de acción son paralelas, pudiendo también aplicarse en la misma dirección o en sentido contrario.
A nuestro alrededor podemos encontrar numerosos cuerpos que se encuentran en equilibrio. La explicación física para que esto ocurra se debe a las condiciones de equilibrio:


Primera condición de equilibrio: Diremos que un cuerpo se encuentra en equilibrio de traslación cuando la fuerza resultante de todas las fuerzas que actúan sobre él es nula: ∑ F = 0.
Desde el punto de vista matemático, en el caso de fuerzas coplanarias, se tiene que cumplir que la suma aritmética de las fuerzas o de sus componentes que están el la dirección positiva del eje X sea igual a las componentes de las que están en la dirección negativa. De forma análoga, la suma aritmética de las componentes que están en la dirección positiva del eje Y tiene que ser igual a las componentes que se encuentran en la dirección negativa:







Por otro lado, desde el punto de vista geométrico, se tiene que cumplir que las fuerzas que actúan sobre un cuerpo en equilibrio tienen un gráfico con forma de polígono cerrado; ya que en el gráfico de las fuerzas, el origen de cada fuerza se representa a partir del extremo de la fuerza anterior, tal y como podemos observar en la siguiente imagen.









El hecho de que su gráfico corresponda a un polígono cerrado verifica que la fuerza resultante sea nula, ya que el origen de la primera fuerza (F1) coincide con el extremo de la última (F4).




PROBLEMAS APLICADOS A LAS LEYES DE NEWTON

PROBLEMAS APLICADOS A LAS LEYES DE NEWTON

1. Una fuerza le proporciona a la masa de 2,5 Kg. una aceleración de 1,2 m/s2. Calcular la magnitud de dicha fuerza en Newton y dinas.

Datos
m = 2,5 Kg.
a =1,2 m/s2.
F =? (N y dyn)

Solución
Nótese que los datos aparecen en un mismo sistema de unidades (M.K.S.)

Para calcular la fuerza usamos la ecuación de la segunda ley de Newton:

Sustituyendo valores tenemos:
Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-2.gif?w=593 
Como nos piden que lo expresemos en dinas, bastará con multiplicar por 105, luego:
Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-3.gif?w=593

2. ¿Qué aceleración adquirirá un cuerpo de 0,5 Kg. cuando sobre él actúa una fuerza de 200000 dinas?
Datos
a =?
m = 2,5 Kg.
F = 200000 dyn
Solución
La masa está dada en M.K.S., en cambio la fuerza está dada en c.g.s.
Para trabajar con M.K.S. debemos transformar la fuerza a la unida M.K.S. de esa magnitud (N)

Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-4.gif?w=593
 Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-5.gif?w=593
 La ecuación de la segunda ley de Newton viene dada por:

Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-11.gif?w=593 
Despejando a tenemos:
Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-7.gif?w=593
 Sustituyendo sus valores se tiene:
Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-8.gif?w=593 


3. Un cuerpo pesa en la tierra 60 Kp. ¿Cuál será a su peso en la luna, donde la gravedad es 1,6 m/s2?
Datos
PT= 60 Kp = 588 N
PL =?
gL = 1,6 m/s2
Solución
Para calcular el peso en la luna usamos la ecuación
Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-9.gif?w=593 
Como no conocemos la masa, la calculamos por la ecuación:
Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-10.gif?w=74&h=25 
que al despejar m tenemos:
Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-111.gif?w=593 
Esta masa es constante en cualquier parte, por lo que podemos usarla en la ecuación (I):
Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-12.gif?w=593
Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-13.gif?w=593 


4. Un ascensor pesa 400 Kp. ¿Qué fuerza debe ejercer el cable hacia arriba para que suba con una aceleración de 5 m/s2? Suponiendo nulo el roce y la masa del ascensor es de 400 Kg.
Solución
Como puede verse en la figura 7, sobre el ascensor actúan dos fuerzas: la fuerza F de tracción del cable y la fuerza P del peso, dirigida hacia abajo.

 Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/dibujo-1.gif?w=593
La fuerza resultante que actúa sobre el ascensor es F – P
Aplicando la ecuación de la segunda ley de Newton tenemos:

Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/formula-141.gif?w=593

Al transformar 400 Kp a N nos queda que:
400 Kp = 400 ( 9,8 N = 3920 N
Sustituyendo los valores de Pm y a se tiene:
F – 3920 N = 400 Kg. ( 0,5 m/s2
F – 3920 N = 200 N
Si despejamos F tenemos:
F = 200 N + 3920 N
F = 4120 N

5. Un carrito con su carga tiene una masa de 25 Kg. Cuando sobre él actúa, horizontalmente, una fuerza de 80 N adquiere una aceleración de 0,5 m/s2. ¿Qué magnitud tiene la fuerza de rozamiento Fr que se opone al avance del carrito?
Solución
En la figura 8 se muestran las condiciones del problema

 Descripción: https://leyesdnewton1727.files.wordpress.com/2012/05/dibujo-21.gif?w=300&h=81

La fuerza F, que actúa hacia la derecha, es contrarrestada por la fuerza de roce Fr, que actúa hacia la izquierda. De esta forma se obtiene una resultante F – Fr que es la fuerza que produce el movimiento.
Si aplicamos la segunda ley de Newton se tiene:

Sustituyendo Fm y a por sus valores nos queda
80 N – Fr = 25 Kg. ( 0,5 m/s2
80 N – Fr = 12,5 N
Si despejamos Fr nos queda:
Fr = 80 N – 12,5 N

Fr = 67,5 N


Las Leyes de Newton

Leyes de Newton
La primera y segunda ley de Newton, en latín, en la edición original de su obra Principia Mathematica
Las leyes de Newton, también conocidas como leyes del movimiento de Newton, son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la mecánica, en particular aquellos relativos al movimiento de los cuerpos, que revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo.
Constituyen los cimientos no solo de la dinámica clásica sino también de la física clásica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirmó que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones más básicas. La demostración de su validez radica en sus predicciones... La validez de esas predicciones fue verificada en todos y cada uno de los casos durante más de dos siglos.
En concreto, la relevancia de estas leyes radica en dos aspectos: por un lado constituyen, junto con la transformación de Galileo, la base de la mecánica clásica, y por otro, al combinar estas leyes con la ley de la gravitación universal, se pueden deducir y explicar las leyes de Kepler sobre el movimiento planetario. Así, las leyes de Newton permiten explicar, por ejemplo, tanto el movimiento de los astros como los movimientos de los proyectiles artificiales creados por el ser humano y toda la mecánica de funcionamiento de las máquinas. Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiæ naturalis principia mathematica.
La dinámica de Newton, también llamada dinámica clásica, solo se cumple en los sistemas de referencia inerciales (que se mueven a velocidad constante; la Tierra, aunque gire y rote, se trata como tal a efectos de muchos experimentos prácticos). Solo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz; cuando la velocidad del cuerpo se va aproximando a los 300 000 km/s (lo que ocurriría en los sistemas de referencia no-inerciales) aparecen una serie de fenómenos denominados efectos relativistas. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905.

Historia

La dinámica es la parte de la física que estudia las relaciones entre los movimientos de los cuerpos y las causas que los provocan, en concreto las fuerzas que actúan sobre ellos. La dinámica, desde el punto de vista de la mecánica clásica, es apropiada para el estudio dinámico de sistemas grandes en comparación con los átomos y que se mueven a velocidades mucho menores que las de la luz.3 Para entender estos fenómenos, el punto de partida es la observación del mundo cotidiano. Si se desea cambiar la posición de un cuerpo en reposo es necesario empujarlo o levantarlo, es decir, ejercer una acción sobre él.

Aparte de estas intuiciones básicas, el problema del movimiento es muy complejo: todos aquellos que se observan en la naturaleza (caída de un objeto en el aire, movimiento de una bicicleta, un coche o un cohete espacial) son complicados. Esto motivó que el conocimiento sobre estos hechos fuera erróneo durante siglos. Aristóteles pensó que el movimiento de un cuerpo se detiene cuando la fuerza que lo empuja deja de actuar. Posteriormente se descubrió que esto no era cierto pero el prestigio de Aristóteles como filósofo y científico hizo que estas ideas perduraran siglos, hasta que científicos como Galileo Galilei o Isaac Newton hicieron avances muy importantes con sus nuevas formulaciones. Sin embargo hubo varios físicos que se aproximaron de manera muy certera a las formulaciones de Newton mucho antes de que este formulara sus leyes del movimiento.
Es el caso del español Juan de Celaya, matemático, físico, cosmólogo, teólogo y filósofo que en 1517 publicó un tratado titulado In octo libros physicorum Aristotelis cum quaestionibus eiusdem, secundum triplicem viam beati Thomae, realium et nominatium, obra de especial interés para el estudio de los orígenes de la moderna ciencia del movimiento. Durante su etapa en Francia fue un escritor prolífico, escribiendo sobre todo acerca de la física de Aristóteles y el movimiento. También publicó numerosos trabajos sobre filosofía y lógica. Fue uno de los impulsores de la lógica nominalista y de las ideas mertonianas de los calculatores acerca de la dinámica. Fue capaz de enunciar, dentro de las Leyes de Newton, la Primera Ley de o Primer Principio de la Dinámica (una de las leyes más importantes de la física) un siglo antes que Newton.

Otro destacado pionero fue el también español, y discípulo de Celaya, Domingo de Soto, fraile dominico y teólogo considerado como el promotor de la física moderna. Su teoría del movimiento uniformemente acelerado y la caída de los graves fue el precedente de la Ley de la Gravedad de Newton. Escribió numerosas obras de teología, derecho, filosofía y lógica y también comentó varios libros de física y lógica aristotélica, de los cuales el más importante fue Quaestiones super octo libros physicorum Aristotelis (1551), sobre cinemática y dinámica, la cual fue publicada en varias ciudades italianas, influyendo en personajes como Benedetti o Galileo. Domingo de Soto fue uno de los primeros en establecer que un cuerpo en caída libre sufre una aceleración uniforme con respecto al tiempo —dicha afirmación también había sido establecida por Nicolás Oresme casi dos siglos antes— y su concepción sobre la masa fue avanzada en su época. En su libro Quaestiones explica la aceleración constante de un cuerpo en caída libre de esta manera:

Este tipo de movimiento propiamente sucede en los graves naturalmente movidos y en los proyectiles. Donde un peso cae desde lo alto por un medio uniforme, se mueve más veloz en el fin que en el principio. Sin embargo el movimiento de los proyectiles es más lento al final que al principio: el primero aumenta de modo uniformemente disforme, y el segundo en cambio disminuye de modo uniformemente disforme.

Domingo de Soto ya relacionaba dos aspectos de la física: el movimiento uniformemente disforme (movimiento uniformemente acelerado) y la caída de graves (resistencia interna). En su teoría combinaba la abstracción matemática con la realidad física, clave para la comprensión de las leyes de la naturaleza. Tenía una claridad rotunda acerca de este hecho y lo expresaba en ejemplos numéricos concretos. Clasificó los diferentes tipos de movimiento en:

Movimiento uniforme respecto al tiempo:

Es aquel por el que el mismo móvil en iguales intervalos de tiempo recorre iguales distancias, como se da perfectamente en el movimiento extremadamente regular del cielo.
Movimiento disforme con respecto al tiempo:

Es aquel por el cual, en partes iguales de tiempo son recorridas distancias desiguales, o en (tiempos) desiguales, (espacios) iguales.
Movimiento uniformemente disforme con respecto al tiempo:

Es el movimiento de tal modo disforme, que si dividimos según el tiempo, (la velocidad de) el punto medio de la proporción excede (la velocidad de) el extremo más lento lo que es excedida por el más rápido.
El movimiento uniformemente disforme respecto al tiempo es aquel cuya diformidad es tal, que si se le divide según el tiempo, es decir, según las partes que se suceden en el tiempo, en cada parte del movimiento del punto central excede del movimiento extremo el menor de esa misma parte en cantidad igual a aquella en la que él mismo es superado por el movimiento extremo más intenso.
Soto describió el movimiento de caída libre como ejemplo de movimiento uniformemente acelerado por primera vez, cuestión que solo aparecerá posteriormente en la obra de Galileo:

...este tipo de movimiento propiamente sucede en los (graves) naturalmente movidos y en los proyectiles. Donde un peso cae desde lo alto por un medio uniforme, se mueve más veloz en el fin que en el principio. Sin embargo el movimiento de los proyectiles es más lento al final que al principio: el primero aumenta de modo uniformemente disforme, y el segundo en cambio disminuye de modo uniformemente diforme.

Por lo tanto era aplicable la ley de la velocidad media para calcular el tiempo de caída:
Esta especie de movimiento es la propia de los cuerpos que se mueven con movimiento natural y la de los proyectiles.
En efecto, cada vez que cae una masa desde una cierta altura y en el seno de un medio homogéneo, se mueve al final más de prisa que al principio. Pero el movimiento de los proyectiles es más lento al final que al comienzo, y así el primero se intensifica, y el segundo se debilita uniformemente.
Movimiento diformente disforme con respecto al tiempo:

Es el movimiento en tal modo disforme, que si es dividido según el tiempo, no ocurre que el punto medio de cada parte en la misma proporción excede (en velocidad) a un extremo cuanto es excedido por el otro. Este tipo de movimiento es el que esperamos en los animales, donde se observa el aumento y la disminución.

Este fue un descubrimiento clave en física y base esencial para el posterior estudio de la gravedad por Galileo Galilei e Isaac Newton. Ningún científico de las universidades de París y Oxford de aquella época había conseguido describir la relación entre movimiento uniformemente disforme en el tiempo y la caída de los graves como lo hizo Soto.
Tras las ideas innovadoras sobre el movimiento de estos científicos, Galileo hizo un avance muy importante al introducir el método científico que enseña que no siempre se debe creer en las conclusiones intuitivas basadas en la observación inmediata, pues esto lleva a menudo a equivocaciones. Galileo realizó un gran número de experiencias en las que se iban cambiando ligeramente las condiciones del problema y midió los resultados en cada caso. De esta manera pudo extrapolar sus observaciones hasta llegar a entender un experimento ideal.3 nota 5 En concreto, observó cómo un cuerpo que se mueve con velocidad constante sobre una superficie lisa se moverá eternamente si no hay rozamientos ni otras acciones externas sobre él.
Inmediatamente se presentó otro problema: ¿si la velocidad no lo revela, qué parámetro del movimiento indica la acción de fuerzas exteriores?; Galileo respondió también a esta pregunta, pero Newton lo hizo de manera más precisa: no es la velocidad sino su variación la consecuencia resultante de la acción de arrastrar o empujar un objeto. Esta relación entre fuerza y cambio de velocidad (aceleración) constituye la base fundamental de la mecánica clásica. Fue Isaac Newton (hacia 1690) el primero en dar una formulación completa de las leyes de la mecánica e inventó los procedimientos matemáticos necesarios para explicarlos y obtener información a partir de ellos.



PRIMERA LEY DE NEWTON

La primera ley de Newton, conocida también como Ley de inercía, nos dice que si sobre un cuerpo no actua ningún otro, este permanecerá indefinidamente moviéndose en línea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).
Como sabemos, el movimiento es relativo, es decir, depende de cual sea el observador que describa el movimiento. Así, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento. La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actua ninguna fuerza neta se mueve con velocidad constante.
En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial.
La Primera ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista algo que provoque dicho cambio. Ese algo es lo que conocemos como fuerzas. Estas son el resultado de la acción de unos cuerpos sobre otros.

SEGUNDA LEY DE NEWTON

La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera:
F = m a
Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:
F = m a
La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N. Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2, o sea,

1 N = 1 Kg · 1 m/s2
La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m · a. Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.
Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir:
p = m · v
La cantidad de movimiento también se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg·m/s. En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:
La Fuerza que actua sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir,
F = dp/dt
De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos:
F = d(m·v)/dt = m·dv/dt + dm/dt ·v
Como la masa es constante
dm/dt = 0
y recordando la definición de aceleración, nos queda
F = m a
tal y como habiamos visto anteriormente.
Otra consecuencia de expresar la Segunda ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservación de la cantidad de movimiento. Si la fuerza total que actua sobre un cuerpo es cero, la Segunda ley de Newton nos dice que:
0 = dp/dt

Es decir, que la derivada de la cantidad de movimiento con respecto al tiempo es cero. Esto significa que la cantidad de movimiento debe ser constante en el tiempo (la derivada de una constante es cero). Esto es el Principio de conservación de la cantidad de movimiento: si la fuerza total que actua sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo.

TERCERA LEY DE NEWTON

La tercera ley, también conocida como Principio de acción y reacción nos dice que si un cuerpo A ejerce una acción sobre otro cuerpo B, éste realiza sobre A otra acción igual y de sentido contrario.
Esto es algo que podemos comprobar a diario en numerosas ocasiones. Por ejemplo, cuando queremos dar un salto hacia arriba, empujamos el suelo para impulsarnos. La reacción del suelo es la que nos hace saltar hacia arriba.
Cuando estamos en una piscina y empujamos a alguien, nosotros tambien nos movemos en sentido contrario. Esto se debe a la reacción que la otra persona hace sobre nosotros, aunque no haga el intento de empujarnos a nosotros.
Hay que destacar que, aunque los pares de acción y reacción tenga el mismo valor y sentidos contrarios, no se anulan entre si, puesto que actuan sobre cuerpos distintos.