SEGUNDA
CONDICIÓN DE EQUILIBRIO
La suma algebraica de las torcas aplicadas a un cuerpo con
respecto a un eje cualquiera perpendicular al plano que los contiene es igual a
cero.
Momento de fuerza o torque:
El momento de una fuerza o torca produce una rotación de un cuerpo
alrededor de un punto fijo físicamente llamado eje.
El momento de una fuerza con respécto a un punto cualquiera,
(centro de momento o eje de rotación) es el producto de la fuerza por la
distancia prependicular del centro de momento a la fuerza (brazo de momento)
Los signos de este pueden ser positivo cuando el movimiento es
anti-horario con respecto a su eje, y negativos cuando es horario con respecto
a su eje.
Torque
de una Fuerza
Cuando se aplica una fuerza en algún punto de un cuerpo rígido, el
cuerpo tiende a realizar un movimiento de rotación en torno a algún eje. La
propiedad de la fuerza para hacer girar al cuerpo se mide con una magnitud
física que llamamos torque o momento de la fuerza. Se prefiere usar la palabra
torque y no momento, porque esta última se emplea para referirnos al momento
lineal, momento angular o momento de inercia, que son todas magnitudes físicas
diferentes para las cuales se usa una misma palabra.
Analizaremos cualitativamente el efecto de rotación que una fuerza puede
producir sobre un cuerpo rígido. Consideremos como cuerpo rígido a una regla
fija en un punto O ubicado en un extremo de la regla, sobre el cual pueda tener
una rotación, y describamos el efecto que alguna fuerza de la misma magnitud
actuando en distintos puntos, produce sobre la regla fija en O, como se muestra
en la figura (a).Una fuerza F1 aplicada en el punto a produce una rotación en
sentido antihorario, F2 en b produce una rotación horaria y con mayor rapidez
de rotación que en a, F3 en b pero en dirección de la línea de acción que pasa
por O no produce rotación, F4 inclinada en b produce rotación horaria con menor
rapidez de rotación que F2; F5 y F6 aplicadas perpendicularmente a la regla no
producen rotación. Por lo tanto existe una cantidad que produce la rotación del
cuerpo rígido relacionada con la fuerza, que definimos como el torque de la
fuerza.
Se define el torque T de una fuerza F que actúa sobre algún
punto del cuerpo rígido, en una posición r respecto de cualquier origen O, por
el que puede pasar un eje sobre el cual se produce la rotación del cuerpo
rígido, al producto vectorial entre la posición r y la fuerza aplicada F.
El torque es una magnitud vectorial, si q es el ángulo entre r y
F, su valor numérico por definición del producto vectorial, es:
Su dirección es siempre perpendicular al plano
de los vectores r y F, cuyo diagrama
vectorial se muestra en la figura que sigue; su sentido está dado por la regla
del producto vectorial o la regla de la mano derecha. En la regla de la mano
derecha los cuatro dedos de la mano derecha apuntan a lo largo de r y luego se
giran hacia F a través del ángulo q, la dirección del pulgar derecho estirado
es la dirección del torque y en general de cualquier producto vectorial.
Por convención se considera el torque positivo o negativo si la
rotación que produce la fuerza es en sentido antihorario u horario
respectivamente.
El torque de una fuerza depende de la magnitud y dirección de F y de su punto
de aplicación respecto de un origen O. Si la fuerza F pasa por O, r = 0 y el
torque es cero. Si q = 0 o 180º, es decir, F está sobre la línea de acción de
r, F senq = 0 y el torque es cero. F senq es la componente de F perpendicular a
r, sólo esta componente realiza torque, y se le puede llamar F┴. En la siguiente figura se ve que r┴ = r senq es la distancia
perpendicular desde el eje de rotación a la línea de acción de la
fuerza, a r┴ se le
llama brazo de palanca de F. Entonces, la magnitud del torque se puede escribir
como:
T = r (F senq) = F (r senq) = rF┴ = r┴F
No hay comentarios:
Publicar un comentario