domingo, 26 de marzo de 2017

SONIDO

SONIDO
El sonido (del latín sonĭtus, por analogía prosódica con ruido, chirrido, rugido, etc.), en física, es cualquier fenómeno que involucre la propagación de ondas mecánicas (sean audibles o no), generalmente a través de un fluido (u otro medio elástico) que esté generando el movimiento vibratorio de un cuerpo.

El sonido humanamente audible consiste en ondas sonoras y ondas acústicas que se producen cuando las oscilaciones de la presión del aire, son convertidas en ondas mecánicas en el oído humano y percibidas por el cerebro. La propagación del sonido es similar en los fluidos, donde el sonido toma la forma de fluctuaciones de presión. En los cuerpos sólidos la propagación del sonido involucra variaciones del estado tensional del medio.

La fonética acústica concentra su interés especialmente en los sonidos del habla: cómo se generan, cómo se perciben, y cómo se pueden describir gráfica o cuantitativamente. La propagación del sonido involucra transporte de energía sin transporte de materia, en forma de ondas mecánicas que se propagan a través de un medio elástico sólido, líquido o gaseoso. Entre los más comunes se encuentran el aire y el agua. No se propagan en el vacío, al contrario que las ondas electromagnéticas. Si las vibraciones se producen en la misma dirección en la que se propaga el sonido, se trata de una onda longitudinal y si las vibraciones son perpendiculares a la dirección de propagación es una onda transversal.
FÍSICA DEL SONIDO
La física del sonido es estudiada por la acústica, que trata tanto de la propagación de las ondas sonoras en los diferentes tipos de medios continuos como la interacción de estas ondas sonoras con los cuerpos físicos.





Magnitudes físicas del sonido

Como todo movimiento ondulatorio, el sonido puede representarse mediante la Transformada de Fourier como una suma de curvas sinusoides, tonos puros, con un factor de amplitud, que se pueden caracterizar por las mismas magnitudes y unidades de medida que a cualquier onda de frecuencia bien definida: Longitud de onda (λ), frecuencia (f) o inversa del período (T), amplitud (relacionada con el volumen y la potencia acústica) y fase. Esta descomposición simplifica el estudio de sonidos complejos ya que permite estudiar cada componente frecuencial independientemente y combinar los resultados aplicando el principio de superposición, que se cumple porque la alteración que provoca un tono no modifica significativamente las propiedades del medio.

La caracterización de un sonido arbitrariamente complejo implica analizar:

Potencia acústica: El nivel de potencia acústica (PWL Power Wattage Level) es la cantidad de energía radiada al medio en forma de ondas por unidad de tiempo por una fuente determinada. La unidad en que se mide es el vatio y su símbolo es W. La potencia acústica depende de la amplitud.
Espectro de frecuencias: la distribución de dicha energía entre las diversas ondas componentes.


Velocidad del sonido

En el aire, el sonido tiene una velocidad de 331,5 m/s cuando: la temperatura es de 0 °C, la presión atmosférica es de 1 atm (nivel del mar) y se presenta una humedad relativa del aire de 0 % (aire seco). Aunque depende muy poco de la presión del aire.
La velocidad del sonido depende del tipo de material por el que se propague. Cuando el sonido se desplaza en los sólidos tiene mayor velocidad que en los líquidos, y en los líquidos es más veloz que en los gases.
Esto se debe a que las partículas en los sólidos están más cercanas.
La velocidad del sonido en el aire se puede calcular en relación a la temperatura de la siguiente manera
V_s = V_{0} + \beta T\,


Reverberación

La reverberación es la suma total de las reflexiones del sonido que llegan al lugar del receptor en diferentes momentos del tiempo. Auditivamente se caracteriza por una prolongación, a modo de "cola sonora", que se añade al sonido original. La duración y la coloración tímbrica de esta cola dependen de: La distancia entre el oyente y la fuente sonora; la naturaleza de las superficies que reflejan el sonido. En situaciones naturales hablamos de sonido directo para referirnos al sonido que se transmite directamente desde la fuente sonora hasta nosotros (o hasta el mecanismo de captación que tengamos). Por otra parte, el sonido reflejado es el que percibimos después de que haya rebotado en las superficies que delimitan el recinto acústico, o en los objetos que se encuentren en su trayectoria. Evidentemente, la trayectoria del sonido reflejado siempre será más larga que la del sonido directo, de manera que -temporalmente- escuchamos primero el sonido directo, y unos instantes más tarde escucharemos las primeras reflexiones; a medida que transcurre el tiempo las reflexiones que nos llegan son cada vez de menor intensidad, hasta que desaparecen. Nuestra sensación, no obstante, no es la de escuchar sonidos separados, ya que el cerebro los integra en un único precepto, siempre que las reflexiones lleguen con una separación menor de unos 50 milisegundos. Esto es lo que se denomina efecto Haas o efecto de precedencia.



Resonancia

Es el fenómeno que se produce cuando dos cuerpos tienen la misma frecuencia de vibración, uno de los cuales empieza a vibrar al recibir las ondas sonoras emitidas por el otro.

Para entender el fenómeno de la resonancia existe un ejemplo muy sencillo. Supóngase que se tiene un tubo con agua y muy cerca de él (sin entrar en contacto) tenemos un diapasón, si golpeamos el diapasón con un metal, mientras echan agua en el tubo, cuando el agua alcance determinada altura el sonido será más fuerte; esto se debe a que la columna de agua contenida en el tubo se pone a vibrar con la misma frecuencia que la que tiene el diapasón, lo que evidencia por qué las frecuencias se refuerzan y en consecuencia aumenta la intensidad del sonido.

Un ejemplo es el efecto de afinar las cuerdas de la guitarra, puesto que al afinar, lo que se hace es igualar las frecuencias, es decir poner en resonancia el sonido de las cuerdas.

El sonido en la música

El sonido, en combinación con el silencio, es la materia prima de la música. En la música los sonidos se califican en categorías como: largos y cortos, fuertes y débiles, agudos y graves, agradables y desagradables. El sonido ha estado siempre presente en la vida cotidiana del hombre. A lo largo de la historia el ser humano ha inventado una serie de reglas para ordenarlo hasta construir algún tipo de lenguaje musical.

Propiedades
Las cuatro cualidades básicas del sonido son la altura, la duración, la intensidad y el timbre o color.

Altura

La altura, o altura tonal, indica si el sonido es grave, agudo o medio, y viene determinada por la frecuencia fundamental de las ondas sonoras, medida en ciclos por segundo o hercios (Hz).
vibración lenta = baja frecuencia = sonido grave.
vibración rápida = alta frecuencia = sonido agudo.

Para que los humanos podamos percatar un sonido, este debe estar comprendido entre el rango de audición de 20 y 20.000 Hz. Por debajo de este rango tenemos los infrasonidos y por encima los ultrasonidos. A esto se le denomina rango de frecuencia audible. Cuanta más edad se tiene, este rango va reduciéndose tanto en graves como en agudos.

En la música occidental se fueron estableciendo tonos determinados llamados notas, cuya secuencia de 12 (C, C#, D, D#, E, F, F#, G, G#, A, A#, B) se va repitiendo formando octavas, en cada una de estas se duplica la frecuencia. La diferencia entre distintas notas se denomina intervalo.
Duración

Es el tiempo durante el cual se mantiene un sonido. Podemos escuchar sonidos largos, cortos, muy cortos, etc. Los únicos instrumentos acústicos que pueden mantener los sonidos el tiempo que quieran, son los de cuerda frotada, como el violín, y los de viento (utilizando la respiración circular o continua); pero por lo general, los instrumentos de viento dependen de la capacidad pulmonar, y los de cuerda según el cambio del arco producido por el ejecutante.

El sonido tarda entre 12 y 15 centésimas de segundo en llegar al cerebro. En el caso de que la duración sea menor, no da tiempo a que se pueda reconocer la altura, produciéndose una sensación de chasquido llamada "clic".
Intensidad

Es la cantidad de energía acústica que contiene un sonido, es decir, lo fuerte o suave de un sonido. La intensidad viene determinada por la potencia, que a su vez está determinada por la amplitud y nos permite distinguir si el sonido es fuerte o débil.

La intensidad del sonido se divide en intensidad física e intensidad auditiva, la primera esta determinada por la cantidad de energía que se propaga, en la unidad de tiempo, a través de la unidad de área perpendicular a la dirección en que se propaga la onda. Y la intensidad auditiva que se fundamenta en la ley psicofísica de Weber-Fechner, que establece una relación logarítmica entre la intensidad física del sonido que es captado, y la intensidad física mínima audible por el oído humano.

Los sonidos que percibimos deben superar el umbral auditivo (0 dB) y no llegar al umbral de dolor (130 dB). Esta cualidad la medimos con el sonómetro y los resultados se expresan en decibelios (dB) en honor al científico e inventor Alexander Graham Bell.

La intensidad también tiene que ver con la direccionalidad, ya que se relaciona directamente con la distancia.
Timbre

El timbre es la cualidad del sonido que permite la identificación de su fuente sonora.

Una misma nota suena distinta si la toca una flauta, un violín, una trompeta, etc. Cada instrumento tiene un timbre que lo identifica o lo diferencia de los demás. Con la voz sucede lo mismo. El sonido dado por un hombre, una mujer, un niño tienen distinto timbre. El timbre nos permitirá distinguir si la voz es áspera, dulce, ronca o aterciopelada. También influye en la variación del timbre la calidad del material que se utilice. Así pues, el sonido será claro, sordo, agradable o molesto.

EL EFECTO DOPPLER

El efecto Doppler, llamado así por el físico austriaco Christian Andreas Doppler, es el cambio de frecuencia aparente de una onda producida por el movimiento relativo de la fuente respecto a su observador.

Hay ejemplos cotidianos del efecto Doppler en los que la velocidad a la que se mueve el objeto que emite las ondas es comparable a la velocidad de propagación de esas ondas. La velocidad de una ambulancia (50 km/h) puede parecer insignificante respecto a la velocidad del sonido al nivel del mar (unos 1235 km/h), sin embargo, se trata de aproximadamente un 4 % de la velocidad del sonido, fracción suficientemente grande como para provocar que se aprecie claramente el cambio del sonido de la sirena desde un tono más agudo a uno más grave, justo en el momento en que el vehículo pasa al lado del observador.

En el caso del espectro visible de la radiación electromagnética, si el objeto se aleja, su luz se desplaza a longitudes de onda más largas, produciéndose un corrimiento hacia el rojo. Si el objeto se acerca, su luz presenta una longitud de onda más corta, desplazándose hacia el azul. Esta desviación hacia el rojo o el azul es muy leve incluso para velocidades elevadas, como las velocidades relativas entre estrellas o entre galaxias, y el ojo humano no puede captarlo, solamente medirlo indirectamente utilizando instrumentos de precisión como espectrómetros. Si el objeto emisor se moviera a fracciones significativas de la velocidad de la luz, sí sería apreciable de forma directa la variación de longitud de onda.





Frecuencia observada                                             Cambio de frecuencia









ONDAS - ONDAS TRANSVERSALES - LONGITUDINALES

ONDAS


Longitud de onda λ, se puede medir entre dos puntos correspondientes en una forma de onda.

En física, una onda (del latín unda) consiste en la propagación de una perturbación de alguna propiedad del espacio, por ejemplo, densidadpresióncampo eléctrico o campo magnético, implicando un transporte de energía sin transporte de materia. El espacio perturbado puede contener materia (aire, agua, etc) o no (vacío).

La magnitud física cuya perturbación se propaga en el medio se expresa como una función tanto de la posición como del tiempo \psi ({\vec  {r}},t). Matemáticamente se dice que dicha función es una onda si verifica la ecuación de ondas:
\nabla ^{2}\psi ({\vec  {r}},t)={\frac  {1}{v^{2}}}{\partial ^{2}\psi  \over \partial t^{2}}({\vec  {r}},t)

donde es la velocidad de propagación de la perturbación. Por ejemplo, ciertas perturbaciones de la presión de un medio, llamadas sonido, verifican la ecuación anterior, aunque algunas ecuaciones no lineales también tienen soluciones ondulatorias, por ejemplo, un solitón.

Una vibración puede definir las características necesarias y suficientes que caracterizan un fenómeno como onda. El término suele ser entendido intuitivamente como el transporte de perturbaciones en el espacio, donde se considera el espacio como un medio en el que pueden producirse y propagarse dichas perturbaciones a través de él, al variar alguna de sus propiedades medibles.
La teoría de ondas se conforma como una característica rama de la física que se ocupa de las propiedades de los fenómenos ondulatorios independientemente de cual sea su origen físico (Ostrovsky y Potapov, 1999). Una peculiaridad de estos fenómenos ondulatorios es que a pesar de que el estudio de sus características no depende del tipo de onda en cuestión, los distintos orígenes físicos que provocan su aparición les confieren propiedades muy particulares que las distinguen de unos fenómenos a otros. Por ejemplo, la acústica se diferencia de la óptica en que las ondas sonoras están relacionadas con aspectos más mecánicos que las ondas electromagnéticas (que son las que gobiernan los fenómenos ópticos). Conceptos tales como masacantidad de movimientoinercia o elasticidad son conceptos importantes para describir procesos de ondas sonoras, a diferencia de en las ópticas, donde estas no tienen una especial relevancia. Por lo tanto, las diferencias en el origen o naturaleza de las ondas producen ciertas propiedades que caracterizan cada onda, manifestando distintos efectos en el medio en que se propagan (por ejemplo, en el caso del aire: vórtices, ondas de choque; en el caso de los sólidos: dispersión; y en el caso del electromagnetismo presión de radiación).

ELEMENTOS DE UNA ONDA

Cresta: La cresta es el punto de máxima elongación o máxima amplitud de onda; es decir, el punto de la onda más separado de su posición de reposo.

Período (T): El periodo es el tiempo que tarda la onda en ir de un punto de máxima amplitud al siguiente.

Amplitud (A): La amplitud es la distancia vertical entre una cresta y el punto medio de la onda. Nótese que pueden existir ondas cuya amplitud sea variable, es decir, crezca o decrezca con el paso del tiempo.

Frecuencia (f): Número de veces que es repetida dicha vibración por unidad de tiempo. En otras palabras, es una simple repetición de valores por un período determinado.
T={\frac  {1}{f}}
{\displaystyle T={\frac {1}{f}}}

Valle: Es el punto más bajo de una onda.

Longitud de onda (\lambda ): Es la distancia que hay entre el mismo punto de dos ondulaciones consecutivas, o la distancia entre dos crestas consecutivas.

Nodo: es el punto donde la onda cruza la línea de equilibrio.

Elongación (x): Es la distancia que hay, en forma perpendicular, entre un punto de la onda y la línea de equilibrio.

Ciclo: es una oscilación, o viaje completo de ida y vuelta.

Velocidad de propagación (v: es la velocidad a la que se propaga el movimiento ondulatorio. Su valor es el cociente de la longitud de onda y su período.
v={\frac  {\lambda }{T}}

Características

Las ondas periódicas están caracterizadas por crestas o montes y valles, y usualmente es categorizada como longitudinal o transversal. Una onda transversal es aquella con las vibraciones perpendiculares a la dirección de propagación de la onda; ejemplos incluyen ondas en una cuerda y ondas electromagnéticas. Onda longitudinal es aquella con vibraciones paralelas en la dirección de la propagación de las ondas; ejemplos incluyen ondas sonoras.

Cuando un objeto corte hacia arriba y abajo en una onda en un estanque, experimenta una trayectoria orbital porque las ondas no son simples ondas transversales sinusoidales.

Ondas en la superficie de una cuba son realmente una combinación de ondas transversales y longitudinales; por lo tanto, los puntos en la superficie siguen caminos orbitales.

Todas las ondas tienen un comportamiento común bajo un número de situaciones estándar. Todas las ondas pueden experimentar los siguientes fenómenos:

Difracción. Ocurre cuando una onda al topar con el borde de un obstáculo deja de ir en línea recta para rodearlo.

Efecto Doppler. Efecto debido al movimiento relativo entre la fuente emisora de las ondas y el receptor de las mismas.

Interferencia. Ocurre cuando dos ondas se combinan al encontrarse en el mismo punto del espacio.

Reflexión. Ocurre cuando una onda, al encontrarse con un nuevo medio que no puede atravesar, cambia de dirección.

Refracción. Ocurre cuando una onda cambia de dirección al entrar en un nuevo medio en el que viaja a distinta velocidad.

Onda de choque. Ocurre cuando varias ondas que viajan en un medio se superponen formando un cono.

ONDAS TRANSVERSALES
Una onda transversal es una onda en la que cierta magnitud vectorial presenta oscilaciones en alguna dirección perpendicular a la dirección de propagación. Para el caso de una onda mecánica de desplazamiento, el concepto es ligeramente sencillo, la onda es transversal cuando las vibraciones de las partículas afectadas por la onda son perpendiculares a la dirección de propagación de la onda. Las ondas electromagnéticas son casos especiales de ondas transversales donde no existe vibración de partículas, pero los campos eléctricos y magnéticos son siempre perpendiculares a la dirección de propagación, y por tanto se trata de ondas transversales.

Si una onda transversal se mueve en el plano x-positivo, sus oscilaciones van en dirección arriba y abajo que están en el plano y-z.

Manteniendo una traza se compara la magnitud del movimiento aleatorio y el desplazamiento en instantes sucesivos y se aprecia el avance de la onda. Transcurrido un tiempo la persistencia de la traza muestra como todos los puntos pasan por todos los estados de vibración. Sin embargo para conocer como cambia el desplazamiento con el tiempo resulta más práctico observar otra gráfica que represente el movimiento de un punto. Los puntos en fase con el seleccionado vibran a la vez y están separados por una longitud de onda. La velocidad con que se propaga la fase es el cociente entre esa distancia y el tiempo que tarda en llegar. Cualquier par de puntos del medio en distinto estado de vibración están desfasados y si la diferencia de fase es 180º diremos que están en oposición. En este caso los dos puntos tienen siempre valor opuesto del desplazamiento como podemos apreciar en el registro temporal. Este tipo de onda transversal igualmente podría corresponder a las vibraciones de los campos eléctrico y magnético en las ondas electromagnéticas. Una onda electromagnética que puede propagarse en el espacio vacío no produce desplazamientos puntuales de masa.

Ejemplos


Ejemplos de onda transversales incluyen ondas sísmicas secundarias, el movimiento de los campos eléctricos (E) y magnéticos (V) en una onda plana electromagnética, donde ambos oscilan perpendicularmente entre sí, así como en dirección de la transferencia de energía. Por lo tanto, una onda electromagnética consta de dos ondas transversales, la luz visible es un ejemplo de onda electromagnética. Véase Espectro electromagnético para información de distintos tipos de onda electromagnética.
ONDAS LONGITUDINALES

Las ondas longitudinales son ondas en las que el desplazamiento a través del medio está en la misma dirección o en la dirección opuesta a la dirección de desplazamiento de la onda.
Las ondas longitudinales mecánicas también se llaman ondas de compresión u ondas de compresibilidad, ya que producen compresión y rarefacción cuando viaja a través de un medio, y las ondas de presión producen aumentos y disminuciones en la presión.

La primera figura ilustra el caso de una onda sonora. Si el centro de la figura es un foco puntual generador de la onda, los frentes de onda se desplazan alejándose del foco, transmitiendo el sonido a través del medio de propagación, por ejemplo aire.

Por otra parte, cada partícula de un frente de onda cualquier oscila en dirección de la propagación, inicialmente es empujada en la dirección de propagación por efecto del incremento de presión provocado por el foco, retornando a su posición anterior por efecto de la disminución de presión provocada por su desplazamiento. De esta manera, las consecutivas capas de aire (frentes) se empujando unas a otras transmitiendo el sonido, y por esa razón las ondas sonoras son ondas longitudinales, y necesitan de un medio material para desplazarse (sólido, líquido o gas).

El otro tipo principal de onda es la onda transversal, en la que los desplazamientos a través del medio son en ángulo recto hacia la dirección de propagación. Algunas ondas transversales son mecánicas, lo que significa que la onda necesita un medio por donde viajar. Las ondas mecánicas transversales también se llaman "ondas T" o "ondas de corte".
Ejemplos de ondas longitudinales


Se incluye en el concepto de onda longitudinal: las ondas de sonido (vibraciones en la presión, desplazamiento de partículas y velocidad de las partículas propagada en un medio elástico) y las ondas sísmicas de tipo P (creadas por los terremotos y explosiones).

En las ondas longitudinales, el desplazamiento del medio es paralelo a la propagación de la onda, lo que significa que una onda que se propaga en la longitud de un muelle (Slinky toy), donde la distancia entre los bucles aumenta y disminuye, es una buena visualización. Las ondas de sonido en el aire son ondas de presión longitudinales.






PRCESO ISOCÓRICO - ADIABÁTICO - DIATÉRMICO

PROCESO ISOCÓRICO

Un proceso isocórico, también llamado proceso isométrico o isovolumétrico es un proceso termodinámico en el cual el volumen permanece constante; . Esto implica que el proceso no realiza trabajo presión-volumen, ya que éste se define como: {\displaystyle \Delta W=P\Delta V}

donde P es la presión (el trabajo es cero pues no hay cambio de volumen)
En un diagrama P-V, un proceso isocórico aparece como una línea vertical.


Puesto que no existe desplazamiento, el trabajo realizado por el gas es nulo.
{\displaystyle W=0}

Aplicando la primera ley de la termodinámica, podemos deducir que ΔU, el cambio de la energía interna del sistema, es:

{\displaystyle \Delta U=Q-W}
{\displaystyle \Delta U=Q-0}
{\displaystyle \Delta U=Q}

para un proceso isocórico, es decir a volumen constante, todo el calor que transfiramos al sistema aumentará a su energía interna U.


PROCESO ADIABÁTICO

En termodinámica se designa como proceso adiabático a aquel en el cual el sistema termodinámico (generalmente, un fluido que realiza un trabajo) no intercambia calor con su entorno. Un proceso adiabático que es además reversible se conoce como proceso isentrópico. El extremo opuesto, en el que tiene lugar la máxima transferencia de calor, causando que la temperatura permanezca constante, se denomina proceso isotérmico.

El término adiabático hace referencia a volúmenes que impiden la transferencia de calor con el entorno. Una pared aislada se aproxima bastante a un límite adiabático. Otro ejemplo es la temperatura adiabática de llama, que es la temperatura que podría alcanzar una llama si no hubiera pérdida de calor hacia el entorno. En climatización los procesos de humectación (aporte de vapor de agua) son adiabáticos, puesto que no hay transferencia de calor, a pesar que se consiga variar la temperatura del aire y su humedad relativa.

El calentamiento y enfriamiento adiabático son procesos que comúnmente ocurren debido al cambio en la presión de un gas, que conlleva variaciones en volumen y temperatura. Los nuevos valores de las variables de estado pueden ser cuantificados usando la ley de los gases ideales.

Acorde con el primer principio de la termodinámica,

\Delta U+W=0\qquad \qquad \qquad (1)

donde U es la energía interna del sistema y W es el trabajo realizado por el sistema. Cualquier trabajo (W) realizado debe ser realizado a expensas de la energía U, mientras que no haya sido suministrado calor Q desde el exterior. El trabajo W realizado por el sistema se define como

{\displaystyle W=P\Delta V\qquad \qquad \qquad \qquad (2)}

Si se relaciona el tema del proceso adiabático con las ondas, se debe tener en cuenta que el proceso o carácter adiabático solo se produce en las ondas longitudinales

PROCESO DIATÉRMICO

8

Un proceso diatérmico es aquel cuerpo que deja pasar fácilmente calor.
Una interacción térmica es cualquier otro tipo de intercambio de energía. En este caso la pared se denomina diatérmica, diatérmico también puede entenderse por isotérmico , significa que no hay cambio de temperatura debido a una pared diatérmica que aísla el sistema del medio ambiente, en cuanto diatérmicos se refieren a que el sistema tiene un intercambio de energía con los alrededores, un ejemplo, nosotros, los seres humanos, somos sistemas diatérmicos, ya que estamos intercambiando energía con nuestro ambiente, una pared diatérmica es aquella que permite la transferencia de energía térmica (calor) pero, sin que haya transferencia de masa, cualquier superficie real es una superficie diatérmica, por ejemplo, un vaso, los muros de una casa, etc., todos en mayor o menor grado permiten la transferencia de calor.
Límite diatérmico:
Se dice que un límite es diatérmico cuando permite que el estado del sistema se modifique sin que haya movimiento del límite. La manera usual de definirlo es que un límite es diatérmico cuando permite el flujo de calor a través de él.
Paredes diatérmicas:
Son aquellas que sí permiten que un sistema termodinámico modifique su grado relativo de calentamiento.





















PROCESO ISOTÉRMICO - ISOBÁRICO

PROCESO ISOTÉRMICO

Se denomina proceso isotérmico o proceso isotermo al cambio reversible en un sistema termodinámico, siendo dicho cambio a temperatura constante en todo el sistema. La compresión o expansión de un gas ideal puede llevarse a cabo colocando el gas en contacto térmico con otro sistema de capacidad calorífica muy grande y a la misma temperatura que el gas. Este otro sistema se conoce como foco calórico. De esta manera, el calor se transfiere muy lentamente, permitiendo que el gas se expanda realizando trabajo. Como la energía interna de un gas ideal sólo depende de la temperatura y ésta permanece constante en la expansión isoterma, el calor tomado del foco es igual al trabajo realizado por el gas: Q = W.


La energía interna depende de la temperatura. Por lo tanto, si un gas ideal es sometido a  un proceso isotérmico, la variación de energía interna es igual a cero.

Por lo tanto, la expresión de la  1ª Ley de la Termodinámica  


se convierte en  q = - w


PROCESO ISOBÁRICO

Un proceso isobárico es un proceso termodinámico que ocurre a presión constante. La Primera Ley de la Termodinámica, para este caso, queda expresada como sigue:

{\displaystyle \triangle U=Q-P\triangle V}

Donde:
Q\! = calor transferido
{\displaystyle U\!}= energía interna
P\! = presión
V\! = volumen

En un diagrama P-V, un proceso isobárico aparece como una línea horizontal.muy larga y corta y que W=3.000*6-16 =17.894



GASES

GAS
Se denomina gas (palabra inventada por el científico flamenco Jan Baptista van Helmont en el siglo XVII, sobre el latín chaos) al estado de agregación de la materia en el cual, bajo ciertas condiciones de temperatura y presión, sus moléculas interaccionan solo débilmente entre sí, sin formar enlaces moleculares, adoptando la forma y el volumen del recipiente que las contiene y tendiendo a separarse, esto es, expandirse, todo lo posible por su alta concentración de energía cinética. Los gases son fluidos altamente compresibles, que experimentan grandes cambios de densidad con la presión y la temperatura. 
Las moléculas que constituyen un gas casi no son atraídas unas por otras, por lo que se mueven en el vacío a gran velocidad y muy separadas unas de otras, explicando así las propiedades:
·         Las moléculas de un gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos. Las fuerzas gravitatorias y de atracción entre las moléculas son despreciables, en comparación con la velocidad a la que se mueven sus moléculas.
·         Los gases ocupan completamente el volumen del recipiente que los contiene.
·         Los gases no tienen forma definida, adoptando la de los recipientes que las contiene.
·         Pueden comprimirse fácilmente, debido a que existen enormes espacios vacíos entre unas moléculas y otras.
temperatura y presión ambientales los gases pueden ser elementos como el hidrógeno, el oxígeno, el nitrógeno, el cloro, el flúor y los gases nobles, compuestos como el dióxido de carbono o el propano, o mezclas como el aire.

Los vapores y el plasma comparten propiedades con los gases y pueden formar mezclas homogéneas, por ejemplo vapor de agua y aire, en conjunto son conocidos como cuerpos gaseosos, estado gaseoso o fase gaseosa.

Leyes de los gases
Existen diversas leyes derivadas de modelos simplificados de la realidad que relacionan la presión, el volumen y la temperatura de un gas

Ley de Boyle-Mariotte
La Ley de Boyle-Mariotte (o Ley de Boyle), formulada por Robert Boyle y Edme Mariotte, es una de las leyes de los gases que relaciona el volumen y la presión de una cierta cantidad de gas mantenida a temperatura constante. La ley dice que a una temperatura constante y para una masa dada de un gas el volumen del gas varía de manera inversamente proporcional a la presión absoluta del recipiente:
{\displaystyle PV=k\,}

Ley de Charles
A una presión dada, el volumen ocupado por una cierta cantidad de un gas es directamente proporcional a su temperatura.
Matemáticamente la expresión sería:
{\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {T_{1}}{T_{2}}}} Ó {\displaystyle {\frac {V_{1}}{V_{2}}}={\frac {T_{1}}{T_{2}}}}
en términos generales:
(V1 * T2) = (V2 * T1)

Ley de Gay-Lussac
La presión de una cierta cantidad de gas, que se mantiene a volumen constante, es directamente proporcional a la temperatura:
Es por esto que para poder envasar gas, como gas licuado, primero ha de enfriarse el volumen de gas deseado, hasta una temperatura característica de cada gas, a fin de poder someterlo a la presión requerida para licuarlo sin que se sobrecaliente y eventualmente, explote. 
{\displaystyle {\frac {P_{1}}{T_{1}}}={\frac {P_{2}}{T_{2}}}}

Ley general de los gases
Combinando las tres leyes anteriores se obtiene:
{\displaystyle \qquad {\frac {PV}{T}}=C}

Ley de los gases ideales
De la ley general de los gases se obtiene la ley de los gases ideales. Su expresión matemática es:
{\displaystyle P\cdot V=n\cdot R\cdot T}
siendo P la presión, V el volumen, n el número de moles, R la constante universal de los gases ideales y T la temperatura en Kelvin. Tomando el volumen de un mol a una atmósfera de presión y a 273 K, como 22,4 l se obtiene el valor de R= 0,082 atm·l·K−1·mol−1